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Abstract
Background: There are several reports that indicate a linkage between exposure to power
frequency (50 – 60 Hz) magnetic fields with abnormalities in the early embryonic development of
the chicken. The present study was designed to understand whether power frequency
electromagnetic fields could act as an environmental insult and invoke any neurochemical or
toxicological changes in developing chick embryo model.

Methods: Fertilized chicken eggs were subjected to continuous exposure to magnetic fields (50
Hz) of varying intensities (5, 50 or 100 µT) for a period of up to 15 days. The embryos were taken
out of the eggs on day 5, day 10 and day 15. Neurochemical (norepinephrine and 5-
hydroxytryptamine) and amino acid (tyrosine, glutamine and tryptophan) contents were measured,
along with an assay of the enzyme glutamine synthetase in the brain. Preliminary toxicological
investigations were carried out based on aminotransferases (AST and ALT) and lactate
dehydrogenase activities in the whole embryo as well as in the liver.

Results: The study revealed that there was a significant increase (p < 0.01 and p < 0.001) in the
level of norepinephrine accompanied by a significant decrease (p < 0.01 and p < 0.001) in the
tyrosine content in the brain on day 15 following exposure to 5, 50 and 100 µT magnetic fields.
There was a significant increase (p < 0.001) in glutamine synthetase activity resulting in the
significantly enhanced (p < 0.001) level of glutamine in the brain on day 15 (for 100 µT only). The
possible mechanisms for these alterations are discussed. Further, magnetic fields had no effect on
the levels of tryptophan and 5-hydroxytryptamine in the brain. Similarly, there was no effect on the
activity of either aminotransferases or lactate dehydrogenase in the whole embryo or liver due to
magnetic field exposure.

Conclusions: Based on these studies we conclude that magnetic field-induced changes in
norepinephrine levels might help explain alterations in the circadian rhythm, observed during
magnetic field stress. Also, the enhanced level of glutamine can act as a contributing factor for
developmental abnormalities.
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Background
The effects of power frequency magnetic fields (50 Hz) on
in utero development of embryos are of much greater con-
sequence than transiently-reduced fertility. The possibility
that induced electric fields and current might affect cellu-
lar proliferation and differentiation in the developing
embryo and foetus has been examined in a number of
studies. Concern has been expressed about the possible
adverse effects of occupational exposure to electromag-
netic fields on the development of the embryo and foetus,
particularly by operators of Visual Display Units (VDU),
and by staff operating clinical magnetic resonance diag-
nostic systems. However, the evidence for any adverse
effects on pregnancy outcome, derived from epidemiolog-
ical studies is equivocal [1]. It has been shown that there
are abnormal embryological changes in chick embryos
following exposure to weak (1 µT) pulsed or sinusoidal
magnetic fields of up to 100 kHz [2-7]; however, other
investigators have not been able to replicate the magnetic
field sensitivity of developing chick embryos to weak elec-
tromagnetic fields [8-10]. As a result of these contradic-
tory reports the controversy over the effects of magnetic
fields on developing chick embryos still continues.

The use of chick embryo as a biological system has certain
methodological advantages over the utilization of other
upper vertebrates. Because the chick is an amniote verte-
brate, its early embryogenesis involves developmental
processes that are equivalent to those occurring in mam-
mals, but takes place at higher rate. Moreover, as an ovip-
arous organism, any response of the chick embryo to an
external agent, such as magnetic field, would be attributa-
ble to a direct interaction of the magnetic stimulus with
the embryonic development process and not an influence
of the field on the maternal organism [11].

In this context we have conducted a study on the effect of
50 Hz magnetic fields on developing chick embryo. The
main objective of the study was to understand any toxico-
logical or neurochemical alterations influenced by a mag-
netic field, since embryo growth and development is
mainly controlled by genetic and environmental factors.
Studies of the birth weight of relatives, together with ani-
mal cross breeding experiments have led to the conclu-
sion that diversity is essentially determined by the
intrauterine environments and that genetic factors play a
relatively weak role [12]. The studies were conducted
under three varying magnetic field intensities (5, 50 and
100 µT). The magnetic field intensities were selected
based on the national survey of magnetic field exposure at
different locations (Unpublished data) conducted by
Central Power Research Institute, Hyderabad, Ministry of
Power, Government of India.

Methods
Chemicals and reagents
Tryptophan, tyrosine, norepinephrine, 5-hydroxytryp-
tamine and O-phthalaldehyde were from Sigma, (St.
Louis, USA). Dibutylamine and sodium octyl sulphonate
were purchased from Fluka, (Neu-Ulm, Switzerland) and
Lancaster, (Morecamble, England), respectively. All sol-
vents used were of HPLC grade procured from E. Merck
(India) Limited, (Mumbai, India). All other reagents were
analytical grade.

Magnetic field exposure facility
A square-shaped Helmholtz coil, producing an alternating
current (AC) magnetic field (50 Hz) proportional to the
electric current in the coil, was wound over a wooden
frame of dimension 25 × 25 × 25 cm3 (l × b × h), suitable
for placement inside an incubator (Binder, Tuttlingen,
Germany). Electric current through the coil was regulated
as explained below.

Since the magnetic field exposure is a continuous process,
an uninterrupted power supply (UPS) was used in order
to avoid the supply variation. The output voltage variation
of the UPS was limited to less than 1% ensuring stable
magnetic field generation. Supply voltage can produce
electric field also inside the incubator. If the supply volt-
age is higher, electric fields produced will also be higher,
which is not desirable while studying the biological effects
of magnetic fields. To reduce the presence of electric field
in the exposure set up the 230 V supply voltage was
stepped down to 12V/15V using a step down transformer.
The resistance/impedance of the coil being constant at
fixed frequencies, the current control was achieved
through a variable resistance connected in series with the
coil. The heating effect was taken into account by selecting
higher wattage rheostats. Similarly, to reduce heating of
the conductor of coil, the conductor diameter was higher
to carry the necessary current. The current source (step
down transformer, rheostat etc.) was shielded by means of
MS sheet enclosures.

The calibration of the exposure facility was carried to con-
firm uniform distribution of the magnetic field intensity
where eggs were kept (Figure 1).

Experimental model and design
Freshly fertilized eggs were obtained from M/s
Venkateshwara Hatcheries, Hyderabad, India. The eggs
were randomly divided into following groups

Group I: Control (n = 12)

Group II: EMF-Exposed (n = 12)
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The control group was placed in a regular incubator and
the exposed group was exposed to varying magnetic field
intensities (5 ± 0.25 µT, 50 ± 2.5 µT and 100 ± 5 µT) in the
specially designed set up explained above. All the eggs
were covered with sterile cotton to maintain uniform tem-
perature (35 ± 2°C) and rotated every 3–4 hours to ensure
even field exposure. At the end of 5, 10 and 15 days of
incubation, the eggs (n = 4) were withdrawn from both
sets and subjected to analysis. The eggs were dissected to
isolate whole embryo, liver (preserved at -20°C) and
brain (preserved at -70°C) for the assays detailed below.

Neurotransmitter levels in brains
Brains, preserved at -70°C were thawed and homogenized
in a solution made of 0.15 M perchloric acid containing
0.025% each of cysteine and EDTA. The homogenates
were centrifuged at 12,000 g for 30 min at 4°C and the
clear supernatants were used for the estimation of neuro-
transmitter levels by high performance liquid chromatog-
raphy (HPLC) as described by Lee Chin [13]. Aliquots (20
µl) of the clear supernatant was injected into the reverse
phase C18 columns (250 mm × 4.6 mm; particle size – 5
µm) fitted on to a HPLC system (Shimadzu LC-10AT, Shi-

madzu RF-10AXL and Shimadzu C-R6A Chromatopac,
Kyoto, Japan) equipped with a fluorescence detector sys-
tem. The eluant contained an aqueous buffer and ace-
tonitrile (181: 19, v/v). The aqueous buffer (pH 3.8) was
made of citric acid (12.16 mM), diammonium hydrogen
phosphate (11.6 mM), sodium octyl sulfonate (2.54
mM), dibutylamine phosphate (3.32 mM) and EDTA (1.1
mM). The eluant mixture was filtered through a 0.45 µm
filter, degassed, and run at a flow rate of 1.0 ml/min for 25
min. Standard solutions of tyrosine (5 – 40 pg), norepine-
phrine (20–100 pg), tryptophan (20–100 pg) and serot-
onin (2 – 20 pg) were injected individually and as a
mixture to note their retention times with their peak areas.
The fluorimetric detector used was very sensitive and
could detect amounts as low as 20 pg. Aliquots (20 µl) of
test samples or standards were loaded onto HPLC and
resolved completely within 25 min. The samples were also
spiked with a mixture of standards, and the areas under
the curve of the standards were subtracted from the com-
bined areas to obtain the actual quantities of neurotrans-
mitters present in the brain.

Magnetic field exposure facility for developing chick embryoFigure 1
Magnetic field exposure facility for developing chick embryo.
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Determination of glutamine content
Brains were homogenized in Tris-HCl buffer (pH 7.4) and
treated with ice cold trichloroacetic acid (10%). The
deproteinised samples (20 µl) obtained on centrifugation
were treated with 50 µl of a mixture made of 250 mg O-
phthalaldehyde and 250 µl β-mercaptoethanol in 6.3 ml
methanol. After incubation at room temperature for 10
min, the samples were filtered through a 0.45 µm filter
and an aliquot (10 µl) was injected into the HPLC reverse
phase (C18) column and detected in the isocratic mode by
using a fluorescence detector [14]. The mobile phase con-
sisted of acetonitrile and 0.04 M sodium acetate buffer,
pH 5.4 (13.6: 86.4). Glutamine was eluted within 15 min
and compared with a series of derivatised glutamine
standards ranging in concentrations from 15–70 pmoles.

Assay of glutamine synthetase
Glutamine synthetase (L-glutamate ATP ammonia ligase,
EC 6.3.1.2) activity in clarified chick brain supernatants
(obtained as detailed above) was assayed according to the
method described by Shapiro and Stadtman [15]. The
amounts of γ-glutamyl hydroxamate formed after 15 min
at 37°C were measured (1 µmole of γ-glutamyl hydroxa-
mate has an optical density 0.532 at 530 nm).

Enzyme assays
The whole embryo as well as liver samples were weighed
and homogenized separately in phosphate buffer (20
mM, pH 7.4). The homogenates were diluted (1:1) with
the same buffer and centrifuged at 10,000 rpm. Using a
semi-automated auto-analyser (BTR 820, Biosystems, Bar-
celona, Spain), supernatants obtained were used for vari-
ous assays including cytosolic aspartate aminotransferase
(AST, EC 2.6.1.1), alanine aminotransferase (ALT, EC
2.6.1.2) and lactate dehydrogenase (LDH, EC 1.1.1.27)
enzymes, employing kinetic methods described below.

Assay of aminotransferase activities
The amino transferases were analyzed using the coupled
kinetic assay methods [16]:

a) AST catalyses the transamination of L-aspartate and α-
ketoglutarate to L-glutamate and oxaloacetate. Subse-
quently malate dehydrogenase converts oxaloacetate to
malate with oxidation of NADH to NAD that is accompa-
nied by a decrease in the absorbance at 340 nm. The rate
of decrease is proportional to the AST activity.

b) ALT assay is similar to the AST assay except for the use
of L-alanine as the substrate. The pyruvate formed is con-
verted to L-lactate by lactate dehydrogenase while NADH
is converted to NAD with a subsequent decrease in the
absorbance at 340 nm.

Assay of lactate dehydrogenase
Lactate dehydrogenase catalyses the reduction of pyruvate
to L-lactate with oxidation of NADH to NAD. Since the
oxidation of NADH is directly proportional to the reduc-
tion of pyruvate in equimolar amounts, the activity of
LDH was calculated from the decrease in absorbance at
340 nm at 37°C [16].

Statistical analyses of the data were based on the Student's
t-test using SigmaPlot (Version 5.00) statistical package.

Results
Neurotransmitter levels in brains
The level of tyrosine and norepinephrine on day 15 under
different magnetic field intensities (5, 50 and 100 µT) are
given in Figures 2, 3, 4, 5, 6 and 7. There was a significant
decrease (p < 0.01) in the level of tyrosine content on day
15 for all magnetic field strengths tested as compared with
the control group. Also, there was a significant increase (p
< 0.01 and p < 0.001) in the level of norepinephrine on
day 15 for the 5, 50 and 100 µT magnetic field intensities
as compared with the control group.

It was observed that magnetic field intensities (5, 50 and
100 µT) had no effect on the level of tyrosine and nore-
pinephrine up to day 10 as compared with the control
group. Similarly, none of the magnetic field intensities (5,
50 and 100 µT) had any effect on the level of tryptophan
and 5-HT up to day 15 of the development of chick
embryo.

Effect of magnetic field (5 µT) on tyrosine level in developing chick embryo brain (day 15)Figure 2
Effect of magnetic field (5 µT) on tyrosine level in developing 
chick embryo brain (day 15)
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Glutamine content and glutamine synthetase activity
There was a significant increase in the glutamine level (p
< 0.01) and glutamine synthetase activity (p < 0.001) for
the 100 µT exposure on day 15, in comparison with the
respective control group as given in Figures 8 and 9,
whereas, there was no significant change in the glutamine
level and glutamine synthetase activity between control
and experimental group for the 100 µT exposure up to day
10.

Further, we observed that there was no significant change
in the glutamine level and glutamine synthetase activity
between control and experimental group for the 5 or 50
µT exposure.

Activity of aminotransferases and lactate dehydrogenase
The magnetic field intensities (5, 50 and 100 µT) had no
effect on the activity of AST, ALT and LDH either in the
liver or in the whole embryo up to day15 as compared
with the control group.

Effect of magnetic field (5 µT) on norepinephrine level in developing chick embryo brain (day 15)Figure 3
Effect of magnetic field (5 µT) on norepinephrine level in 
developing chick embryo brain (day 15)

Effect of magnetic field (50 µT) on tyrosine level in develop-ing chick embryo brain (day 15)Figure 4
Effect of magnetic field (50 µT) on tyrosine level in develop-
ing chick embryo brain (day 15)
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Effect of magnetic field (50 µT) on norepinephrine level in developing chick embryo brain (day 15)Figure 5
Effect of magnetic field (50 µT) on norepinephrine level in 
developing chick embryo brain (day 15)

Effect of magnetic field (100 µT) on tyrosine level in develop-ing chick embryo brain (day 15)Figure 6
Effect of magnetic field (100 µT) on tyrosine level in develop-
ing chick embryo brain (day 15)
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Discussion
There are very few experimental studies on the effect of
power frequency magnetic fields on the neurotransmitters
and enzymes in developing embryo system [17,18]. In the
present investigation we have analyzed the level of nore-
pinephrine and tyrosine (precursor for norepinephrine
and epinephrine) along with 5-HT and tryptophan (pre-
cursor for 5-HT) in the brain of developing chick embryos
exposed to one of several magnetic field intensities (5, 50
or 100 µT).

Epinephrine, norepinephrine and dopamine are the
major factors in response to severe stress [19]. These bio-
active amines (dopamine, epinephrine and norepine-
phrine) are synthesized in the chromaffin cells of the
adrenal medulla from tyrosine precursor. Collections of
these cells are also found in the heart, liver, kidney,
gonads, and adrenergic neurons of the post ganglion,
sympathetic system and central nervous system. These
amines have dual role acting as neurotransmitters and
hormones.

The stress response involves an acute, integrated adjust-
ment of many complex organ processes (brain, muscles,
cardiopulmonary system and liver) at the expense of other
organs that are less immediately involved (skin, gastroin-
testinal system and lymphoid tissue). Many aspects of
behavior and physiology such as eating, sleeping, body
temperature and oxygen consumption, show a daily
(circadian) rhythm which can be linked to changes in
neurochemicals and which continue to persist, often with
a longer period, even in the absence of external time cues
such as light/dark cycle. There is evidence that chronic
exposure to 60 Hz electric field can modulate specific cir-
cadian rhythms in primates exposed to 26 to 39 kV m-1 in
the absence of time cues [20]. These changes have been
linked to concomitant field-induced changes in pineal
activity, particularly a reduced production of melatonin.
However, more recent studies on the effect of exposure to
ELF electric or magnetic fields on the other hormones
levels, including those of stress hormones (corticoster-
ones in rodents, cortisol in primates), in which care has
been taken to eliminate confounding factors, report no
effects of ELF EMF on these hormone levels [21]. Even

Effect of magnetic field (100 µT) on norepinephrine level in developing chick embryo brain (day 15)Figure 7
Effect of magnetic field (100 µT) on norepinephrine level in 
developing chick embryo brain (day 15)

Effect of magnetic field (100 µT) on glutamine synthetase activity in developing chick embryo brain (day 15)Figure 8
Effect of magnetic field (100 µT) on glutamine synthetase 
activity in developing chick embryo brain (day 15)
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Effect of magnetic field (100 µT) on glutamine level in devel-oping chick embryo brain (day 15)Figure 9
Effect of magnetic field (100 µT) on glutamine level in devel-
oping chick embryo brain (day 15)
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though some reports indicate suppression in the level of
melatonin due to magnetic field [22], other reports indi-
cate absence of suppression of melatonin [23].

We have found a significant increase in the level of nore-
pinephrine in the developing chick brain on day 15 fol-
lowing exposure to 5, 50 or 100 µT magnetic fields. The
increase in norepinephrine levels is further supported by
a significant decrease in the tyrosine pool, a precursor
amino acid for norepinephrine. Norepinephrine is associ-
ated with higher levels of emotional arousal. The center of
norepinephrine functioning is the locus coeruleus in the
brain stem. Norepinephrine release affects distant neu-
rons in a manner similar to that of an aerosol spray. When
norepinephrine activity is high, there is increased activity
in the limbic system and decreased activity in the cerebral
cortex resulting in performance anxiety [24]. This type of
anxiety may affect the circadian rhythm and also may
induce restlessness. Especially, in the case of birds, pineal
gland activity is found to be altered under the influence of
magnetic field leading to migratory restlessness [25]. The
lack of appreciable amount of iron in the pineal gland
[26,27] of birds makes it an unlikely target as is the
magnetite required for transducing magnetic stimuli in
the bacteria [28]. This suggests that the alterations in the
levels of norepinephrine induced by magnetic field may
influence the activity of pineal gland, which is involved in
the production of melatonin. However, we have not
observed any alterations in the level of tryptophan (pre-
cursor amino acid for melatonin) or 5-HT in the brain
under magnetic field stress.

The mechanism of increase in the level of norepinephrine
can be speculated based on the regulation of the enzyme
dopamine beta hydroxylase (DBH), which converts
dopamine to norepinephrine. The DBH requires two cop-
per atoms per subunit for its activity [29]. Copper is a par-
amagnetic metal and its role in the activity of DBH may be
altered by the external magnetic fields. As supportive evi-
dence, a recent study has shown that the ion-protein com-
plexes can rotate under static magnetic fields [30]. Hence,
the increased level of norepinephrine indicates a
possibility of increased DBH activity. Further studies are
warranted to prove this aspect.

The predominant amino acids present in the brain of
most species are glutamate, glutamine, aspartate, N-acetyl
aspartate and GABA (gamma aminobutyric acid), consti-
tuting more than 60% of the free amino nitrogen. Gluta-
mate and its related amino acids are present in highest
concentrations both in brain tissue as well as in the spinal
cord but not in peripheral nerves [31]. Brain tissue is also
extremely sensitive to ammonia, which is immediately
detoxified to glutamine by glutamine synthetase, present
in the endoplasmic reticulum. Glutamine is an important

neurotransmitter synthesized in the brain by GS through
incorporation of an ammonium ion into glutamate.
Glutamine stimulates the release of human growth hor-
mone and it is the rate-limiting factor for muscle growth.

The present study indicates a significant increase in the
level of glutamine in the brain on day 15 (100 µT) in com-
parison with the control. Hence, this may be a contribut-
ing factor for the developmental abnormalities observed
in the chick embryo [2,7]. However, we did not find any
significant change in the morphology of the developing
chick embryo in comparison with the control up to 100
µT.

The finding of an increase in the level of glutamine in the
brain is further supported by the enhanced activity of
glutamine synthetase. As in the case of copper, present in
the DBH, manganese is essential for glutamine synthetase
activity. Also, manganese is dynamically coupled to the
electrophysiological activity of the neurons [32]. Since
manganese is a paramagnetic metal atom, it can be influ-
enced by the external magnetic field, leading to the
enhanced activity of glutamine synthetase. The specula-
tion warrants further study on this aspect. The enhanced
activity of glutamine synthetase decreases the glutamate
pool in the brain leading to the decreased synthesis of
GABA, which is produced from glutamate through decar-
boxylation. GABA is an important inhibitory neurotrans-
mitter present in the brain.

In order to assess the toxicological changes due to mag-
netic fields on the developing chick embryo we have
analyzed the specific activities of aminotransferases (AST,
ALT) and lactate dehydrogenase in the whole body as well
as in the liver. Magnetic field exposures appear to have
had no effect on these parameters suggesting that there is
no direct toxic effect of ELF EMF exposure (up to100 µT)
on the liver or whole body in the developing chick
embryo.

Conclusion
Our present study on the effect of ELF EMF on developing
chick embryo reveals that by day 15, there is a significant
increase in the level of norepinephrine in the brain for 5,
50 or 100 µT magnetic field strengths (fully differentiated
embryo), while there was a decrease in the tyrosine con-
tent. This could explain findings of EMF-induced changes
in circadian rhythm. Also, there was significant increase in
glutamine synthetase activity accompanied by increased
amount of glutamine content in the brain by day 15 for
the 100 µT field strength. This may influence the
developmental changes in the chick embryo previously
observed with exposure to magnetic fields. However,
there were no significant changes in the aminotransferases
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and lactate dehydrogenase under the influence of mag-
netic fields.

List of abbreviations
Hz: Hertz, Unit of frequency, number of complete cycles
per second

µT: Microtesla, Unit of magnetic field intensity

AST: Aspartate aminotransferase

ALT: Alanine aminotransferase

UPS: Uninterrupted power supply

LDH: Lactate dehydrogenase

NAD: Nicotinamide adenine dinucleotide

5-HT: 5-hydroxytryptamine

DBH: Dopamine β-hydroxylase

ELF EMF: Extremely low frequency electromagnetic field

GABA: Gamma amino butyric acid

GS: Glutamine synthetase

HPLC: High performance liquid chromatography

MS: Mild steel

EDTA: Ethylenediamine tetra acetic acid
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